Abstract

This paper presents the development of membraneless sodium perborate fuel cell using acid/alkaline electrolyte. In the acid/alkaline electrolyte, perborate works both as an oxidant as well as reductant. Sodium perborate affords hydrogen peroxide in aqueous medium. The cell converts the energy released by H2O2 decomposition with H+ and OH− ions into electricity and produces water and oxygen. Such a novel design eliminates the need of a membrane, in which acid and alkaline electrolytes contact with each other. At room temperature, the laminar flow-based microfluidic membraneless fuel cell can reach a maximum power density of 34 mW/cm2 with the molar ratio of [Perborate]/[NaOH] = 1 as fuel and [Perborate]/[H2SO4] = 2 as oxidant. The paper reports for the first time the use of sodium perborate as the oxidant and reductant. The developed fuel cell emits no CO2, features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call