Abstract

This study aims to analyze the performance of three prediction models, namely K-Nearest Neighbors (K-NN), Neural Network (NN), and Support Vector Machine (SVM), in predicting the stock price of PT Astra International Tbk (ASII.JK). The research encompasses the initial stages through evaluation using optimal parameters for these three algorithms. The research findings reveal that the K-NN prediction model has the lowest Root Mean Square Error (RMSE) value, with a value of 0.037, indicating the most accurate prediction compared to the other models. Despite the NN model having an RMSE of 0.048, which is higher than K-NN, it still provides reasonably accurate predictions. Meanwhile, the SVM model has an RMSE of 0.075, indicating a higher level of error in its predictions. Based on these results, the recommendation is to utilize the K-NN model as the preferred choice for predicting the ASII.JK stock price.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.