Abstract
The quality of an airline's services cannot be measured from the company's point of view, but must be seen from the point of view of customer satisfaction. Data mining techniques make it possible to predict airline customer satisfaction with a classification model. The Naïve Bayes algorithm has demonstrated outstanding classification accuracy, but currently independent assumptions are rarely discussed. Some literature suggests the use of attribute weighting to reduce independent assumptions, which can be done using particle swarm optimization (PSO) and genetic algorithm (GA) through feature selection. This study conducted a comparison of PSO and GA optimization on Naïve Bayes for the classification of Airline Passenger Satisfaction data taken from www.kaggle.com. After testing, the best performance is obtained from the model formed, namely the classification of Airline Passenger Satisfaction data using the Naïve Bayes algorithm with PSO optimization, where the accuracy value is 86.13%, the precision value is 87.90%, the recall value is 87.29%, and the value is AUC of 0.923.
Highlights
The quality of an airline's services cannot be measured from the company's point of view
Some literature suggests the use of attribute weighting to reduce independent assumptions
This study conducted a comparison of particle swarm optimization (PSO)
Summary
Meskipun Naïve Bayes telah menunjukkan akurasi klasifikasi yang luar biasa, namun saat ini asumsi bebas jarang dibahas pada klasifikasi Naïve Bayes. Penelitian ini menggunakan data yang diambil dari situs www.kaggle.com yang diakses pada tanggal 24 maret 2021 berupa data Airline Passenger Satisfaction [7]. Salah satu cara untuk pada situs www.kaggle.com sejak bulan Mei 2020, mencoba asumsi bebas pada algoritma Naïve Bayes sehingga masih tergolong dataset baru yang belum adalah dengan pembobotan atribut [13]. Data ini terdiri dari 22 atribut, 25976 instance dan 1 label dengan type data boolean. Penggunaan data ini bertujuan untuk mengetahui faktor apa yang paling berkorelasi dengan kepuasan penumpang maskapai penerbangan sehingga cocok digunakakn untuk. Setiap atribut dan label yang digunakan pada diimplementasikan dan hanya ada sedikit parameter penelitian ini dapat dilihat pada Tabel 1. Berdasarkan Gambar 1 dapat diketahui bahwa terdapat 3 model utama dalam penelitian ini yaitu (1) Klasifikasi
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.