Abstract
Distribution of tickets to the destination unit is a very important function in the helpdesk application, but the process of distributing tickets manually by admin officers has drawbacks, namely ticket distribution errors can occur and increase ticket completion time if the number of tickets is large. Helpdesk text classification becomes important to automatically distribute tickets to the appropriate destination units in a short time. This study was conducted to compare the performance of helpdesk text classification at the Directorate General of State Assets of the Ministry of Finance using the K-Nearest Neighbor (KNN) method with the TF-ABS and TF-IDF weighting methods. The research was conducted by collecting complaint documents, preprocessing, word weighting, feature reduction, classification, and testing. Classification using KNN with parameters n_neighbor (k) namely k=1, k=3, k=5, k=7, k=9, k=11, k=13, k=15, k=17, and k=19 to classify 10,537 helpdesk texts into 8 categories. The test uses a confusion matrix based on the accuracy value and score-f1. The test results show that the TF-ABS weighting method is better than TF-IDF with the highest accuracy value of 90.04% at 15% and k=3.
Highlights
Distribution of tickets to the destination unit is a very important function in the helpdesk application, but the process of distributing tickets manually by admin officers has drawbacks, namely ticket distribution errors can occur and increase ticket completion time if the number of tickets is large
This study was conducted to compare the performance of helpdesk text classification at the Directorate General
The research was conducted by collecting complaint documents
Summary
Berdasarkan beberapa penelitian tersebut, maka penelitian ini dilakukan untuk membandingkan performa klasifikasi teks helpdesk menggunakan metode pembobotan kata TF-ABS dan TF-IDF. Atribut method str.lower() dari library Pandas, selanjutnya yang dibutuhkan untuk klasifikasi teks tiket helpdesk proses tokenization dilakukan menggunakan method adalah uraian isi tiket dan kategori tujuan tiket. Mengingat bahwa fokus pada kategorisasi sebuah term terhadap dokumen, semakin banyak term teks adalah untuk kata yang terdistribusi secara berbeda tersebut muncul pada dokumen maka semakin tinggi pada kategori ck dan ck, tidak penting apakah term nilai term tersebut[12]. Inverse Document Frequency (IDF) yang berfungsi efektif dan efisien dalam menyiapkan data berdimensi untuk mengurangi bobot term yang jumlah tinggi untuk permasalahan data mining dan machine kemunculannya banyak di seluruh dokumen learning dengan tujuan untuk membangun model yang menggunakan Persamaan (1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.