Abstract
Diabetes is a global health problem that is increasing in prevalence worldwide. This study compares the performance of two data analysis methods, namely binary logistic regression and naïve bayes classifier in predicting diabetes risk. This study aims to identify factors that significantly affect diabetes risk and classify diabetes risk using binary logistic regression, then compare the classification with the naive bayes classifier algorithm. Binary logistic regression models the relationship between independent predictor variables and binary dependent variables, while naïve bayes classifier uses the assumption of independence between variables. In this study, both methods were evaluated based on accuracy, sensitivity, specificity and positive predictive value. The results show that the factors that influence the risk of diabetes are Age, Gender, Polyuria, Polydipsia, Genital thrush, Itching, Irritability, and Partial paresis. Furthermore, the binary logistic regression results have a higher classification accuracy (92.31%) compared to the naïve bayes classifier (84.61%). Therefore, binary logistic regression was identified as the best method to predict diabetes risk in the context of this study
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.