Abstract

The influence of the industrial revolution 4.0 resulted in very significant changes. Many companies compete to produce robots that facilitate human work, in terms of energy and time in the process of producing goods. One of the robots being developed is the Automated Guided Vehicle (AGV), a vehicle with automatic control. AGV has high accuracy, easy maintenance, and a long operating time. This study discusses the design and implementation of AGV using 2 motors. The front motor using a servo motor is used for steering to turn right and turn left, while the rear motor in the form of a DC motor is used to regulate the speed of the AGV. The AGV movement system is controlled by computer vision. The AGV problem encountered is that the camera reading distance is close, which makes it less efficient in industrial use. This problem can be solved with a camera connected to a raspberry pi capable of capturing text and images from a distance of 100 cm. The use of computer vision makes the AGV robot easy to move. In this study, the accuracy of the movement of the AGV robot to the trajectory pattern has an average angle difference of 3.09°. The difference in the angle indicates a small error so that the AGV can operate optimally. Infield applications, this AGV is used in the manufacturing industry to move goods. Therefore, the use of AGV is needed because it has high accuracy and small error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call