Abstract

Forecasting is the process of estimating conditions in the future by testing conditions from the past. One of the forecasting methods is Singular Spectrum Analysis (SSA) which aim of SSA is to make a decomposition of the original series into the sum of a small number of independent and interpretable components such as a slowly varying trend, oscillatory components and a structureless noise. Gross Domestic Product data in the agriculture, forestry, and fisheries sector are time series data with trend and seasonal pattern so that it can be processed using the SSA method. The forecasting process of SSA method uses the main parameter (L) of 21 obtained by the Blind Source Separation (BSS) method. From forecasting, acquired group of 3 groups. Forecasting resulted the value of Mean Absolute Percentage Error (MAPE) is 1.59% and the value of tracking signal is 2.50, which indicates that the results of forecasting is accurate. Keywords: Forecasting, Gross Domestic Product in the agriculture, forestry, and fisheries sector, Singular Spectrum Analysis (SSA)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.