Abstract
Fuzzy Time Series (FTS) is a time series data forecasting technique that uses fuzzy theory concepts. Forecasting systems using FTS are useful for capturing patterns of past data and then to using it to produce information in the future. Initially in the FTS each pattern of relations formed was considered to have the same weight besides using only the first order. In its development the Weighted Fuzzy Integrated Time Series (WFITS) which gave a difference in the weight of each relation and high order usage has been appeared. Measuring the accuracy of forecasting results is used the value of Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). In this study both the first-order and high-order WFITS methods were applied to forecast rice prices in Indonesia based on data from January 2011 to December 2017. In this regard, the results of the analysis obtained data forecasting using Lee's high-order model WFITS algorithm (1,2,3) giving the value of RMSE and MAPE on the data testing in a row as many as 69,898 and 0.47% while for the RMSE and MAPE on the training data is as many as 70.4039 and 0.54%. Keywords: Fuzzy Time Series, Weighted Fuzzy Integrated Time Series, RMSE, MAPE, High-Order, Rice Prices
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.