Abstract

Peracetic acid (PAA) pretreatment is considered as a novel and effective chemical pretreatment method for sludge. However, there is little information available on potential mechanisms of how PAA pretreatment affects sludge anaerobic digestion (AD). To fill the knowledge gap, this study investigated the effects and potential mechanisms of PAA pretreatment on sludge AD systems from physicochemical and microbiological perspectives. Batch experiments resulted that biogas production was enhanced by PAA pretreatment and the highest cumulative biogas yield (297.94 mL/g VS (volatile solid)) was obtained with 2 mM/g VS of PAA pretreatment. Kinetic model analysis illustrated that the PAA pretreatment improved the biogas potential (Pt) of sludge AD, but prolonged the lag phase (λ) of AD. Mechanistic studies revealed that reactive oxygen species (ROS) (HO•, O2−•, 1O2 and CH3C(O)OO•) were the major intermediate products of PAA decomposition. These ROS effectively promoted the decomposition and solubilization of sludge, and provided more biodegradable organic matter for the following AD reactions. 16S rRNA amplicon sequencing showed that some functional microorganisms associated with hydrolysis, acidogenesis, acetogenesis as well as methanogenesis, such as Hydrogenispora, Romboutsia, Longivirga, Methanosarcina and Methanosaet, were significantly enriched in reactors pretreated with PAA. Redundancy analysis and variation partitioning analysis indicated that functional microorganisms were significantly correlated with intermediate metabolites (soluble carbohydrate, soluble protein, soluble chemical oxygen demand and volatile fatty acids) and cumulative biogas production. This study provides a fresh understanding of the effects and mechanisms of PAA pretreatment on sludge AD, updates the insights into the response of functional microorganisms to PAA pretreatment, and the findings obtained might provide a fundamental basis for chemical pretreatment of sludge AD using oxidants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.