Abstract
Tree swallow nest boxes were deployed at sites proximal to two putative aqueous film forming foam (AFFF) sources in the Duluth, MN area, as well as along the St. Louis River and a reference lake for comparative purposes in 2019, 2020 and 2021. The two AFFF sites were the current Duluth Air National Guard Base (ANG) and the Lake Superior College Emergency Response Training Center. Between 13 and 40 per- and polyfluoroalkyl substances (PFAS), depending on year, were detected and quantified in tree swallow egg, nestling carcasses, and stomach contents. Assessments were made of oxidative stress and ethoxyresorufin-O-dealkylase activity in liver tissue, thyroid hormone levels in plasma and thyroid glands, DNA damage in red blood cells, and two measures of immune response (haptoglobin-like activity and immunoglobulin) in plasma of the nestlings. Additionally, other contaminants, such as polychlorinated biphenyls, legacy organochlorine pesticides, and trace elements, were assessed at sites with no previous data. Total egg PFAS concentrations at the ANG site and north of that site were 30-40 times higher than at the reference lake, while nestling PFAS concentrations were 10-15 times higher. In contrast, the St. Louis River sites had slightly, but non-statistically significant, elevated egg and nestling PFAS concentrations relative to the reference lake (2-5 times higher). One PFAS, perfluorohexane sulfonate (PFHxS), was higher, as a proportion of total PFAS, at sites with a known AFFF source compared to the reference lake, as well as compared to sites along the St. Louis River with mainly urban and industrial sources of PFAS. The ratio of total carboxylates to total sulfonates also distinguished between PFAS sources. There were few to no differences in biomarker responses among sites, and no association with PFAS exposure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.