Abstract

Per- and polyfluoroalkyl substances (PFAS) are widespread chemicals that may affect sex hormones and accelerate reproductive aging in midlife women. To examine associations between serum PFAS concentrations at baseline (1999-2000) and longitudinal serum concentrations of follicle-stimulating hormone (FSH), estradiol, testosterone, and sex hormone-binding globulin (SHBG) at baseline and through 2015-2016. Prospective cohort. General community. 1371 midlife women 45 to 56 years of age at baseline in the Study of Women's Health Across the Nation (SWAN). FSH, estradiol, testosterone, SHBG. In linear mixed models fitted with log-transformed hormones and log-transformed PFAS adjusting for age, site, race/ethnicity, smoking status, menopausal status, parity, and body mass index, FSH was positively associated with linear perfluorooctanoate [n-PFOA; 3.12% (95% CI 0.37%, 5.95%) increase for a doubling in serum concentration), linear perfluorooctane sulfonate [PFOS; 2.88% (0.21%, 5.63%)], branched perfluorooctane sulfonate [2.25% (0.02%, 4.54%)], total PFOS (3.03% (0.37%, 5.76%)), and 2-(N-ethyl-perfluorooctane sulfonamido) acetate [EtFOSAA; 1.70% (0.01%, 3.42%)]. Estradiol was inversely associated with perfluorononanoate [PFNA; -2.47% (-4.82%, -0.05%)) and n-PFOA (-2.43% (-4.97%, 0.18%)]. Significant linear trends were observed in the associations between PFOS and EtFOSAA with SHBG across parity (Ps trend ≤ 0.01), with generally inverse associations among nulliparous women but positive associations among women with 3+ births. No significant associations were observed between PFAS and testosterone. This study observed positive associations of PFOA and PFOS with FSH and inverse associations of PFNA and PFOA with estradiol in midlife women during the menopausal transition, consistent with findings that PFAS affect reproductive aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.