Abstract

The mobilization and transport of per- and poly-fluoroalkyl substances (PFASs) via surface runoff (runoff) from aqueous film-forming foam (AFFF)-contaminated soils during rainfall, flooding, or irrigation has not been thoroughly evaluated, and the effectiveness of carbonaceous sorbents in limiting PFASs in runoff is similarly unquantified. Here, laboratory-scale rainfall simulations evaluate PFAS losses in runoff and in leaching to groundwater (leachate) from AFFF-contaminated soils varying in texture, PFAS composition and concentration, and remediation treatment. Leaching dominated PFAS losses in soils with a concentration of ∑PFAS = 0.2-2 mg/kg. However, with higher soil PFAS concentrations (∑PFAS = 31 mg/kg), leachate volumes were negligible and runoff dominated losses. The concentration and variety of PFASs were far greater in leachates regardless of the initial concentrations in soil. Losses of PFASs were dependent on the C-chain length for leachates and more on the initial concentration in soil for runoff. Suspended materials did not meaningfully contribute to runoff losses. While concentrations of most PFASs declined significantly after the first rainfall event, desorption and transport in both runoff and leachates persisted over several rainfall events. Finally, results showed that sorption to AC mostly occurred during, not prior to, rainfall events and that 1% w/w AC substantially reduced losses in runoff and leachates from all soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call