Abstract

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases characterized by progressive cognitive decline. Early diagnosis and dynamic monitoring are essential to the treatment and care of AD but challenging. Here we develop a noninvasive, blood-based AD detection method based on surface plasmonic resonance imaging (SPRi) technique. The functionalized sensing SPRi chips were constructed with self-assembled loop-displaying peptoid nanosheets to improve the detection sensitivity of plasma amyloid β42 (Aβ42). We analyze the plasma from 30 clinically diagnosed AD patients, 29 amnestic cognitive impairment (aMCI) patients, and 30 control individuals and demonstrate that this sensing system can significantly distinguish the three groups with high sensitivity and specificity. In the follow-up studies of the aMCI patients, we find that decrease in the binding signals in the patients correlates with the disease progression into AD whereas the almost unchanged signals correlate with stable disease remaining at aMCI status. These results show the capability of the peptoid-nanosheet-based SRPi sensing system for the early diagnosis and dynamic monitoring of AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.