Abstract

Natural light-harvesting complexes (LHCs) absorb a broad spectrum of sunlight using a collection of photosynthetic pigments whose spatial arrangement is controlled by a protein matrix and exhibit efficient energy transfer. We constructed a novel light-harvesting protein mimic, which absorbs light in the UV to visible region (280-700 nm) by displaying flavone and porphyrin on a peptoid helix. First, an efficient synthesis of 4'-derivatized 7-methoxyflavone (7-MF, 3 and 4) was developed. The flavone-porphyrin-peptoid conjugate (FPPC) was then prepared via Miyaura borylation on a resin-bound peptoid followed by Suzuki coupling between the peptoid and pigment. Circular dichroism spectroscopy indicated that the FPPC underwent helix-to-loop conversion of the peptoid scaffold upon changing the solvent conditions. A distinct intramolecular energy transfer was observed from 7-MF to porphyrin with greater efficiency in the helix than that in the loop conformation of the peptoid, whereas no clear evidence of energy transfer was obtained for unstructured FPPC. We thus demonstrate the value of the helical peptoid, which provided a controlled orientation for 7-MF and porphyrin and modulated the energy transfer efficiency via conformational switching. Our work provides a way to construct a sophisticated LHC mimic with enhanced coverage of the solar spectrum and controllable energy transfer efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.