Abstract
Peptide alpha-amidation is a widespread, often essential posttranslational modification shared by many bioactive peptides and accomplished by the products of a single gene encoding a multifunctional protein, peptidylglycine alpha-amidating monooxygenase (PAM). PAM has two catalytic domains that work sequentially to produce the final alpha-amidated product peptide. Tissue-specific alternative splicing can generate forms of PAM retaining or lacking a domain required for the posttranslational separation of the two catalytic activities by endoproteases found in neuroendocrine tissue. Tissue-specific alternative splicing also governs the presence of a transmembrane domain and generation of integral membrane or soluble forms of PAM. The COOH-terminal domain of the integral membrane PAM proteins contains routing information essential for the retrieval of PAM from the surface of endocrine and nonendocrine cells. Tissue-specific endoproteolytic processing can generate soluble PAM proteins from integral membrane precursors. Soluble PAM proteins are rapidly secreted from stably transfected nonneuroendocrine cells but are stored in the regulated secretory granules characteristic of neurons and endocrine cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.