Abstract

Limited proteolysis is a pivotal mechanism regulating protein functions. Identifying physiologically or pathophysiologically relevant cleavage sites helps to develop molecular tools that can be used for diagnostics or therapeutics. During proteolysis of secretory and membrane proteins, part of the cleaved protein is liberated and destined to undergo degradation but should retain original cleavage sites created by proteolytic enzymes. We profiled endogenous peptides accumulated for 4 h in media conditioned by primary cultured rat cardiac fibroblasts. A total of 3916 redundant peptide sequences from 94 secretory proteins and membrane proteins served to identify limited cleavage sites, both annotated and unannotated, for signal peptide or propeptide removal, peptide hormone processing, ectodomain shedding, and regulated intramembrane proteolysis. Incorrectly predicted signal cleavage sites are found in typical proteins such as extracellular matrix proteins and the peptide hormone precursor adrenomedullin ADM. The revealed signal peptide cleavage site for ADM was experimentally verified by identifying the major molecular form of flanking proadrenomedullin N-terminal peptide. We suggest that profiling of endogenous peptides, like transcriptome sequence reads, makes sense in regular cells such as fibroblasts and that peptidomics provides insight into proteolysis-regulated protein functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.