Abstract
Despite the noxious effects inflicted by Dinoponera ant's envenomation, the information about the biological properties and composition of their venom is still very limited. Ants from the genus Dinoponera are believed to be the world's largest living ants with a body length of 3cm. Their occurrence is restricted to tropical areas of South America. In this work, we study the venom of the giant Dinoponera quadriceps ant collected in 4 different regions of Brazil. By using a combination of complementary mass spectrometric approaches, we aim at: (i) characterizing the venom composition of these ants; (ii) establishing a comparative analysis of the venom from four geographically different regions in Brazil. This approach demonstrates that ant venom is a copious source of new compounds. Several peptides were identified and selected for "de novo sequencing". Since most of the new peptides showed similarities with antimicrobial peptides (AMPs), antimicrobial assays were performed with the purpose of evaluating their activity. In regard to the comparative study of the four regions, we observed not only major differences in the venom compositions, but also that the venoms collected in closest areas are more similar than the ones collected in distant regions. These observations seem to highlight an adaption of the ant venoms to the local environment. Concerning the biological assays, the peptides called Dq-3162 and Da-3177 showed a wide-ranging antimicrobial activity. The characterization of new AMPs with a broad spectrum of activity and different scaffolds may aid scientists to design new therapeutic agents and understand the mechanisms of those peptides to interact with microbial membranes. The results obtained betoken the biotechnological potential of ant's venom. For the first time this manuscript describes an extensive proteomics characterization of the D. quadriceps venom. In addition this study reports the variation in venom composition of primitive ants from 4 geographically different areas of Brazil. The results reveal the presence of ~335 compounds for each venom/area and inter-colony variations were observed. 16 new peptides were characterized and 2 of them were synthesized and biologically assayed. These findings highlight the considerable and still unexplored diversity of ant's venom which could be used as valuable research tools in different areas of knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.