Abstract

Hepatocellular carcinoma (HCC) still presents poor prognosis with low overall survival rates and limited therapeutic options available. Recently, attention has been drawn to peptidomic analysis, an emerging field of proteomics for the exploration of new potential peptide drugs for the treatment of various diseases. However, research on the potential function of HCC peptides is lacking. Here, we analyzed the peptide spectrum in HCC tissues using peptidomic techniques and explored the potentially beneficial peptides involved in HCC. Changes in peptide profiles in HCC were examined using liquid chromatography-mass spectrometry (LC–MS/MS). Analyze the physicochemical properties and function of differently expressed peptides using bioinformatics. The effect of candidate functional peptides on HCC cell growth and migration was evaluated using the CCK-8, colony formation, and transwell assays. Transcriptome sequencing analysis and western blot were employed to delve into the mode of action of potential peptide on HCC. Peptidomic analysis of HCC tissue yielded a total of 8683 peptides, of which 452 exhibited up-regulation and 362 showed down-regulation. The peptides that were differentially expressed, according to bioinformatic analysis, were closely linked to carbon metabolism and the mitochondrial inner membrane. The peptide functional validation identified a novel peptide, PDLC (peptide derived from liver cancer), which was found to dramatically boost HCC cell proliferation through the Ras/Raf/MEK/ERK signaling cascade. Our research defined the peptide’s properties and pattern of expression in HCC and identified a novel peptide, PDLC, with a function in encouraging HCC progression, offering an entirely new potential therapeutic target the disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.