Abstract

Solid tumors elicit suppressive T cell responses which impair antigen-presenting cell (APC) functions. Such immune suppression results in uncontrolled tumor growth and mortality. Addressing APC dysfunction, dendritic cell (DC)-mediated anti-tumor vaccination was extensively investigated in both mice and humans. These studies never achieved full resistance to tumor relapse. Herein, we describe a repetitive RM-1 murine tumor rechallenge model for recurrence in humans. Using this newly developed model, we show that priming with tumor antigen-pulsed, Toll-like receptor (TLR)2 ligand-activated DCs elicits a host-protective anti-tumor immune response in C57BL/6 mice. Upon stimulation with the TLR2 ligand peptidoglycan (PGN), the tumor antigen-pulsed DCs induce complete resistance to repetitive tumor challenges. Intra-tumoral injection of PGN reduces tumor growth. The tumor resistance is accompanied by increased expression of interleukin (IL)-27, T-box transcription factor TBX21 (T-bet), IL-12, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, along with heightened cytotoxic T lymphocyte (CTL) functions. Mice primed four times with PGN-stimulated tumor antigen-pulsed DCs remain entirely resistant to repeat challenges with RM-1 tumor cells, suggesting complete prevention of relapse and recurrence of tumor. Adoptive transfer of T cells from these mice, which were fully protected from RM-1 rechallenge, confers anti-tumor immunity to syngeneic naive recipient mice upon RM-1 challenge. These observations indicate that PGN-activated DCs induce robust host-protective anti-tumor T cells that completely resist tumor growth and recurrence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call