Abstract

Two hallmarks of the Firmicute phylum, which includes the Bacilli and Clostridia classes, are their ability to form endospores and their "Gram-positive" single-membraned, thick-cell-wall envelope structure. Acetonema longum is part of a lesser-known family (the Veillonellaceae) of Clostridia that form endospores but that are surprisingly "Gram negative," possessing both an inner and outer membrane and a thin cell wall. Here, we present macromolecular resolution, 3D electron cryotomographic images of vegetative, sporulating, and germinating A. longum cells showing that during the sporulation process, the inner membrane of the mother cell is inverted and transformed to become the outer membrane of the germinating cell. Peptidoglycan persists throughout, leading to a revised, "continuous" model of its role in the process. Coupled with genomic analyses, these results point to sporulation as a mechanism by which the bacterial outer membrane may have arisen and A. longum as a potential "missing link" between single- and double-membraned bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.