Abstract

Peptides with dual binding specificity for classical HLA class I and non-classical HLA-E molecules have been identified in virus-encoded proteins, but not in cellular proteins from normal or neoplastic cells. Expression screening of a melanoma cDNA library with a CTL clone recognizing an HLA-A2-restricted tumor-specific epitope encoded by mutant peroxiredoxin 5 (Prdx5), a stress-inducible peroxidase, led to the identification of two alternatively spliced isoforms of the same gene. These isoforms, which lack the catalytic cysteine fundamental for enzymatic activity, showed widespread expression in neoplastic and normal tissues but were unstable at the protein level, being detectable, following transient transfection, only after lactacystin treatment to inhibit proteasomal degradation. Isoform-specific sequences which formed, respectively, as result of exon 1 splicing to either exon 3 or 4, encoded two distinct nonapeptides (AMAPIKTHL and AMAPIKVRL, not present in the full-length protein) with anchor residues for HLA-A2 and HLA-E molecules and able to stabilize HLA-A2 and HLA-E cell surface expression. HLA-E+ targets, loaded with these peptides, were not recognized by NK cells expressing CD94/NKG2A inhibitory or CD94/NKG2C activatory receptors. However, both peptides were recognized, although with low avidity, by HLA-E-restricted CD8+ CTL. The nonapeptide AMAPIKVRL was used to elicit HLA-A2-restricted CTL clones that killed peptide-pulsed lymphoblastoid cell lines and melanoma cells expressing the corresponding Prdx5 isoform. Our results suggest that alternatively spliced isoforms of Prdx5, through the generation of HLA-E- and HLA-A2-restricted peptides may be part of immune-mediated stress response contributing to the detection and elimination of damaged normal or neoplastic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.