Abstract

N6-methyladenosine (m6 A) is the most abundant nucleotide modification observed in eukaryotic mRNA. Changes in m6 A levels in transcriptome are tightly correlated to expression levels of m6 A methyltransferases and demethylases. Abnormal expression levels of methyltransferases and demethylases are observed in various diseases and health conditions such as cancer, male infertility, and obesity. This research explores the efficacy of m6 A-modified RNA as an anticancer drug target. We discovered a 12-mer peptide that binds specifically to m6 A-modified RNA using phage display experiments. Our fluorescence-based assays illustrate the selected peptide binds to methylated RNA with lower micromolar affinity and inhibit the binding of protein FTO, a demethylase enzyme specific to m6 A modification. When cancer cell lines were treated with mtp1, it led to an increase in m6 A levels and a decrease in cell viability. Hence our results illustrate the potential of mtp1 to be developed as a drug for cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call