Abstract

The trigeminal processing of proprioceptive information is unique and very little is known about the neurochemical organization of trigeminal primary afferent neurons which mediate the sensory aspects of proprioception. In studies using immunocytochemicalretrograde tracing techniques, some classical neurotramsitters mediating the afferent modulation of the mesencephalic trigeminal nucleus (MTN) have been investigated. This paper summarizes our current understanding of the peptidergic innervation of the cat MTN. The distribution of immunoreactive substances was studied using specific antisera against 11 major neuropeptides. Light and electron microscopic peroxidase-antiperoxidase immunocytochemical staining techniques in colchicine-treated animals were used to clarify the distribution of peptide-identified fibers related to the MTN. Immunoreactivity to any of the tested neuropeptides could not be detected in the MTN cell bodies. Numerous fibers containing various peptides such as substance P, bombesin, enkephalins, cholecystokinin, vasoactive intestinal polypeptide, vasopressin, and neuropeptide Y were present in the nucleus, however. These thin positive fibers covered the neuronal surface of the MTN cell bodies and some of the immunoreactive varicosities appeared to be in close proximity to profiles of MTN neurons. Electron microscopic observations revealed that perisomatic fibers were in direct apposition to perikarya of unstained large cells and some of them made synaptic contacts with their cell bodies and dendrites. The present results demonstrate that the MTN neurons receive dense basket-like innervation from peptidergic neurons on somata and processes and have supported earlier evidence that the MTN of the cat is under influence of peptidergic input. Results of this study provide further evidence that the neuropeptides examined may play an important role in the integration and transmission of trigeminal proprioceptive information. Most likely they may co-exist with a classical but hitherto unknown neurotransmitter(s), that is unique for this region and whose release can be modulated by peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.