Abstract

The nucleus preopticus medianus (POMe) is known to be a key site in regulation of cardiovascular and body fluid homeostasis. To clarify the regulation mechanism to the POMe, the innervation pattern of synapses made by axon terminals immunoreactive to β-endorphin, neuropeptide Y and tyrosine hydroxylase onto POMe neurons projecting to the subfornical organ (SFO) was investigated in the rat. After injection of a retrograde tracer, wheat germ agglutinin-conjugated horseradish peroxidase-colloidal gold complex, into the SFO, many neurons were retrogradely labeled in the POMe, more frequently in its dorsal part. Electron microscopy of the POMe revealed that β-endorphin- and tyrosine hydroxylase-immunoreactive axon terminals formed predominantly axo-somatic synapses, and neuropeptide Y-immunoreactive axon terminals formed more axo-dendritic than axo-somatic synapses with retrogradely labeled neurons. The present localization patterns of POMe neurons retrogradely labeled from the SFO and the type of synapses of axon terminals immunoreactive to three neurochemical markers on these neurons were compared to those of POMe neurons retrogradely labeled from the paraventricular hypothalamic nucleus demonstrated in our previous report.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.