Abstract

A new strategy has been developed using peptides with amino and carboxylic functional groups as passivating ligands to produce methyl ammonium lead bromide (CH3NH3PbBr3) perovskite nanocrystals (PNCs) with excellent optical properties. The well‐passivated PNCs can only be obtained when both amino and carboxylic groups are involved, and this is attributed to the protonation reaction between NH2 and COOH that is essential for successful passivation of the PNCs. To better understand this synergistic effect, peptides with different lengths have been studied and compared. Due to the polar nature of peptides, peptide‐passivated PNCs (denoted as PNCspeptide) aggregate and precipitate from nonpolar toluene solvent, resulting in a high product yield (≈44%). Furthermore, the size of PNCspeptide can be varied from ≈3.9 to 8.6 nm by adjusting the concentration of the peptide, resulting in tunable optical properties due to the quantum confinement effect. In addition, CsPbBr3 PNCs are also synthesized with peptides as capping ligands, further demonstrating the generality and versatility of this strategy, which is important for generating high quality PNCs for photonics applications including light‐emitting diodes, optical sensing, and imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.