Abstract

Obesity is a heritable trait that contributes to hypertension and subsequent cardiorenal disease risk; thus, the investigation of genetic variation that predisposes individuals to obesity is an important goal. Circulating peptide YY (PYY) is known for its appetite and energy expenditure-regulating properties; linkage and association studies have suggested that PYY genetic variation contributes to susceptibility for obesity, rendering PYY an attractive candidate for study of disease risk. To explore whether common genetic variation at the human PYY locus influences plasma PYY or metabolic traits, we systematically resequenced the gene for polymorphism discovery and then genotyped common single-nucleotide polymorphisms across the locus in an extensively phenotyped twin sample to determine associations. Finally, we experimentally validated the marker-on-trait associations using PYY 3′-untranslated region (UTR)/reporter and promoter/reporter analyses in neuroendocrine cells. Four common genetic variants were discovered across the locus, and three were typed in phenotyped twins. Plasma PYY was highly heritable (P < 0.0001), and genetic pleiotropy was noted between plasma PYY and body mass index (BMI) (P = 0.03). A PYY haplotype extending from the proximal promoter (A-23G, rs2070592) to the 3′-UTR (C+1134A, rs162431) predicted not only plasma PYY (P = 0.009) but also other metabolic syndrome traits. Functional studies with transfected luciferase reporters confirmed regulatory roles in altering gene expression for both 3′-UTR C+1134A (P < 0.001) and promoter A-23G (P = 0.0016). Functional genetic variation at the PYY locus influences multiple heritable metabolic syndrome traits, likely conferring susceptibility to obesity and subsequent cardiorenal disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.