Abstract

We employ shotgun proteomics and data-independent acquisition (DIA) mass spectrometry to analyze cerebrospinal fluid longitudinally collected from 14 amyotrophic lateral sclerosis (ALS) patients (8 males and 6 females). We perform three main analyses of these data: (1) examine the intra- and inter-patient protein variability in CSF; (2) explore the association of inflammation with rate of disease progression; and (3) develop a mixed-effects model to best explain the decrease in ALS-Functional Rating Scale (ALS-FRS) score. Overall, the CSF protein abundances are tightly regulated with the intra-individual variability contributing just 4% to the overall variance. In four patients, a moderately significant correlation (p < 0.1) was observed between inflammation and rate of disease progression. Using a least absolute shrinkage and selection operator (LASSO) variable selection, we selected 55 viable peptides for mathematical modeling via a linear mixed-effects regression. We then employed forward selection to generate a final model by minimizing Akaike's information criterion (AIC). The final model utilized changes in abundance from 28 peptides as fixed effects to model progression of the disease in these patients. These peptides were from proteins involved in stress response and innate immunity. Graphical abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call