Abstract
ABSTRACTPyruvate is an important intermediate of central carbon metabolism and connects a variety of metabolic pathways in Escherichia coli. Although the intracellular pyruvate concentration is dynamically altered and tightly balanced during cell growth, the pyruvate transport system remains unclear. Here, we identified a pyruvate transporter in E. coli using high-throughput transposon sequencing. The transposon mutant library (a total of 5 × 105 mutants) was serially grown with a toxic pyruvate analog (3-fluoropyruvate [3FP]) to enrich for transposon mutants lacking pyruvate transport function. A total of 52 candidates were selected on the basis of a stringent enrichment level of transposon insertion frequency in response to 3FP treatment. Subsequently, their pyruvate transporter function was examined by conventional functional assays, such as those measuring growth inhibition by the toxic pyruvate analog and pyruvate uptake activity. The pyruvate transporter system comprises CstA and YbdD, which are known as a peptide transporter and a conserved protein, respectively, whose functions are associated with carbon starvation conditions. In addition to the presence of more than one endogenous pyruvate importer, it has been suggested that the E. coli genome encodes constitutive and inducible pyruvate transporters. Our results demonstrated that CstA and YbdD comprise the constitutive pyruvate transporter system in E. coli, which is consistent with the tentative genomic locus previously suggested and the functional relationship with the extracellular pyruvate sensing system. The identification of this pyruvate transporter system provides valuable genetic information for understanding the complex process of pyruvate metabolism in E. coli.IMPORTANCE Pyruvate is an important metabolite as a central node in bacterial metabolism, and its intracellular levels are tightly regulated to maintain its functional roles in highly interconnected metabolic pathways. However, an understanding of the mechanism of how bacterial cells excrete and transport pyruvate remains elusive. Using high-throughput transposon sequencing followed by pyruvate uptake activity testing of the selected candidate genes, we found that a pyruvate transporter system comprising CstA and YbdD, currently annotated as a peptide transporter and a conserved protein, respectively, constitutively transports pyruvate. The identification of the physiological role of the pyruvate transporter system provides valuable genetic information for understanding the complex pyruvate metabolism in Escherichia coli.
Highlights
Pyruvate is an important intermediate of central carbon metabolism and connects a variety of metabolic pathways in Escherichia coli
Pyruvate metabolism is highly interconnected with other metabolic pathways, including amino acid metabolism, fatty acid metabolism, and gluconeogenesis
Along with the valuable genetic information for understanding the complex pyruvate metabolism in E. coli, our results provide a versatile pipeline for screening other transporter genes
Summary
Pyruvate is an important intermediate of central carbon metabolism and connects a variety of metabolic pathways in Escherichia coli. Our results demonstrated that CstA and YbdD comprise the constitutive pyruvate transporter system in E. coli, which is consistent with the tentative genomic locus previously suggested and the functional relationship with the extracellular pyruvate sensing system. The identification of this pyruvate transporter system provides valuable genetic information for understanding the complex process of pyruvate metabolism in E. coli. When glucose is taken up at a high rate, the intracellular pyruvate concentration increases, resulting in a high ratio of pyruvate to phosphoenolpyruvate in Escherichia coli This increased ratio activates the ArcA/B global two-component system, which participates in regulating a large number of genes in diverse biochemical reactions, including the repression of tricarboxylic acid cycle genes [1]. Other pyruvate transporter genes in E. coli are yet to be identified
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.