Abstract

Protein self-assembly plays an important role in biological systems, accounting for the formation of mesoscopic structures that can be highly symmetric as in the capsid of viruses or disordered as in molecular condensates or exhibit a one-dimensional fibrillar morphology as in amyloid fibrils. Deposits of the latter in tissues of individuals with degenerative diseases like Alzheimer's and Parkinson's has motivated extensive efforts to understand the sequence of molecular events accounting for their formation. These studies aim to identify on-pathway intermediates that may be the targets for therapeutic intervention. This detailed knowledge of fibril formation remains obscure, in part due to challenges with experimental analyses of these processes. However, important progress is being achieved for short amyloid peptides due to advances in our ability to perform completely unbiased all-atom simulations of the self-assembly process. This perspective discusses recent developments, their implications, and the hurdles that still need to be overcome to further advance the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.