Abstract

Targeting phosphoinositide 3-kinase (PI3K) has been recognized as an attractive strategy for anticancer therapy. The PI3K is a heterodimer composed of a catalytic subunit p110 and a regulatory subunit p85. Here, instead of targeting the catalytic p110 that has been considered previously, we purposed targeting the peptide-recognition domain SH2 of regulatory p85 with natural medicines obtained by using a peptide scaffold-based screening scheme. In the procedure, a core binding motif was extracted from the cocrystallized complex of a cognate phosphopeptide with the domain, which was considered as basic scaffold to perform high-through virtual screening against a structurally diverse, nonredundant library of natural products. A number of hit compounds with high binding potency to the domain and significant conformational similarity with the peptide scaffold were identified; in vitro affinity assay confirmed that five hits have moderate or high affinity for the domain with measured dissociation constants Kd range between 25 and 360 μM, which are comparable to or even better than that of the cognate phosphopeptide SDpYMNMTP and its core motif peptide pYMNM (Kd = 15 and 32 μM, respectively). Structural analysis and nonbonded comparison of SH2 interactions with phosphopeptides and potent hit compounds revealed that only negatively charged phosphate and, sometime, sulfate can confer domain-binding capability to small-molecule compounds, but carboxylate cannot. A similar binding mode of compounds with phosphopeptide is important for the compounds to have high affinity and specificity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call