Abstract

The folding and partitioning of WALP peptides into lipid bilayers is characterized using atomic detail molecular dynamics simulations on microsecond time scales. Elevated temperatures are used to increase sampling, and their suitability is validated via circular dichroism experiments. A new united atom parametrization of lipids is employed, adjusted for consistency with the OPLS all-atom force field. In all simulations secondary structure forms rapidly, culminating in the formation of the native trans-membrane helix, which is demonstrated to have the lowest free energy. Partitioning simulations show that peptide insertion into the bilayer is preceded by interfacial folding. These results are in excellent agreement with partitioning theory. In contrast, previous simulations observed unfolded insertion pathways and incorrectly report stable extended configurations inside the membrane. This highlights the importance of accurately tuning and experimentally verifying force field parameters against microsecond time scale phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.