Abstract

The realization of multifunctional nanoparticle systems is essential to achieve highly efficient catalytic materials for specific applications; however, their production remains quite challenging. They are typically achieved through the incorporation of multiple inorganic components; however, incorporation of functionality could also be achieved at the organic ligand layer. In this work, we demonstrate the generation of multifunctional nanoparticle catalysts using peptide-based ligands for tandem catalytic functionality. To this end, chimeric peptides were designed that incorporated a Au binding sequence and a catalytic sequence that can drive ester hydrolysis. Using this chimera, Au nanoparticles were prepared, which sufficiently presented the catalytic domain of the peptide to drive tandem catalytic processes occurring at the peptide ligand layer and the Au nanoparticle surface. This work represents unique pathways to achieve multifunctionality from nanoparticle systems tuned by both the inorganic and bio/organic components, which could be highly important for applications beyond catalysis, including theranostics, sensing, and energy technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call