Abstract

This study fabricated yellow-emitting CDs (Y-CDs) by hydrothermal treatment of citric acid and urea and applied them as a fluorescence turn-on platform for sensitive and selective detection of lipopolysaccharide (LPS) based on the non-shifted AIEE of peptide-stabilized CD aggregates. The designed peptide (named K3) consisting of aggregation-active and LPS-recognition units triggered the aggregation of Y-CDs, switching on their fluorescence through the blue-shifted AIEE process. The formed K3-stabilized Y-CD aggregates (K3-YCDAs) specifically interacted with LPS at neutral pH, demonstrating that the sequence of the decorated peptide was highly connected with their selectivity and sensitivity. The K3-YCDAs provided a fast response time (within 5 min) to detect LPS with a quantification range of 0.5–100.0 nM and a limit of detection (LOD, signal-to-noise ratio of 3) of 300.0 pM. By integrating ultrafiltration membranes as a concentration device with K3-YCDAs as a sensing probe, the LOD for LPS was further reduced to 3.0 pM. The determination of picomolar levels of plasma LPS by the K3-YCDAs coupled to the centrifugation ultrafiltration was demonstrated to fall within the specificity range of clinical interest for sepsis patients. Also, the K3-YCDAs served as a fluorescent probe to selectively image and quantify E. coli cells. The distinct advantages of the K3-YCDAs for LPS include fast response time, wide linear range, low detection limit, and excellent selectivity compared to previously reported sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call