Abstract
Antibody-mediated neurological diseases constitute an emerging clinical entity that remains to be fully explored. Recent studies identified autoantibodies that directly confer pathogenicity, and it was shown that in these cases immunotherapies can result in profound positive patient responses. These advances highlight the urgent need for improved means to effectively screen patient samples for novel autoantibodies (aAbs) and their subsequent characterization. Here, we discuss challenges and opportunities for peptide microarrays to contribute to the identification, mapping, and characterization of the underlying monospecific disease-defining binding surfaces. We outlinecontrol experiments,workflow modifications and bioinformatic filtering methods thatenhance the predictive power of array-based studies.Further, we highlight experimental and computer-based display approaches that have the potential to expand the use of synthetic microarrays over the detection of discontinuous epitopes. Knowledge over the autoantibody epitopes in neurological disease will enhance our understanding of the pathological mechanisms and thereby potentially contribute to novel diagnostic approaches or even innovative antigen-specific treatments that avoid the serious adverse effects seen with currently used immunosuppressive therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.