Abstract
A charged synthetic peptide-based noncytotoxic hydrogelator was employed in encapsulation, storage, and sustainable release of different kinds of drugs, namely, ciprofloxacin (CP), an antibiotic; 5-fluorouracil (5-FU), an anticancer drug and proteins like lysozyme and bovine serum albumin (BSA). Hydrogelation of the peptide and its coassembly with the drug molecules were studied to obtain mechanistic details. All of the different cargos were capable of sustained and efficient release from the delivery platform. The drugs were found to retain their activity post release, while the proteins showed complete retention of their secondary structure. While about 80% CP was released at physiological pH over a period of 3 days, 5-FU was better released (73%) at an acidic pH (5.5) in comparison to the physiological pH (68%). Lysozyme was better released (82%) than BSA (43%) owing to the smaller size of the former and negative charge on the latter. Such biocompatible multicargo-releasing platforms from simple economically viable biomaterials, capable of sustained and tissue-specific release of cargo, are extremely promising in topical delivery of therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.