Abstract

Peptides with highly sequence-dependent recognition, assembly, and encoding abilities can perform functions similar to DNA or even better, such as biosensing, molecular information processing, coding, or storage. However, the combination of versatile peptides and 2D materials are rarely used for multipurpose integrated applications, including biosensing, information processing and security. Herein, peptide-graphene sensing system was comprehensively used for dual-signal sensing of tumor-derived exosomes (TDEs), logic computing, and information protection. The system used fluorescent-labeled CD63-binding peptide CP05 and graphene oxide (GO) to selectively detect CD63 and TDEs by fluorescence and resonance light scattering. From three levels such as matter, energy, and information analysis, the matter and energy changes in GO−CP05 peptide sensing system were transformed into valuable information, which achieve the dual-mode quantitative detection of TDEs and its marker CD63, and the actual serum analysis. This matter-energy interaction network was also informationized, and utilized for parallel and batch logic computing, two kinds of molecular crypto-steganography (based on peptide sequence and Boolean logic relationships), which facilitates development of intelligent sensing and advanced information technology. This work not only provides a new method for sensitive detection of important disease markers, but also provides ideas for integrating molecular sensing and informatization to open molecular digitization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call