Abstract

In vitro environments that realize biomimetic scaffolds, cellular composition, physiological shear, and strain are integral to developing tissue models of organ-specific functions. In this study, an in vitro pulmonary alveolar capillary barrier model is developed that closely mimics physiological functions by combining a synthetic biofunctionalized nanofibrous membrane system with a novel three-dimensional (3D)-printed bioreactor. The fiber meshes are fabricated from a mixture of polycaprolactone (PCL), 6-armed star-shaped isocyanate-terminated poly(ethylene glycol) (sPEG-NCO), and Arg-Gly-Asp (RGD) peptides by a one-step electrospinning process that offers full control over the fiber surface chemistry. The tunable meshes are mounted within the bioreactor where they support the co-cultivation of pulmonary epithelial (NCI-H441) and endothelial (HPMEC) cell monolayers at air-liquid interface under controlled stimulation by fluid shear stress and cyclic distention. This stimulation, which closely mimics blood circulation and breathing motion, is observed to impact alveolar endothelial cytoskeleton arrangement and improve epithelial tight junction formation as well as surfactant protein B production compared to static models. The results highlight the potential of PCL-sPEG-NCO:RGD nanofibrous scaffolds in combination with a 3D-printed bioreactor system as a platform to reconstruct and enhance in vitro models to bear a close resemblance to in vivo tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call