Abstract

Biotransformation of [1-6-14C]benzene and [1-14C]toluene in English ryegrass (Lolium perenne L.) seedlings was investigated. Vapors of these compounds were absorbed by the leaves of this plant. Benzene and toluene were oxidized, forming phenol and benzoic acid, respectively. A portion of phenol and benzoic acid was bound by low-molecular-weight peptides forming conjugates. A qualitative amino acid composition of the peptides involved in the conjugation was determined. After removing plants from the atmosphere containing [1-6-14C]benzene and [1-14C]toluene, the radioactivity of the conjugates gradually decreased. This process was accompanied by the evolution of 14CO2, indicating the breakdown of these conjugates. Radioactive compounds thus formed were oxidized, yielding carbon dioxide. A portion of phenol and benzoic acid, along with peptide conjugation, was subjected to further oxidative transformations up to disruption of the aromatic ring. By this pathway, nonvolatile carboxylic acids, such as muconic, fumaric, succinic, malic, malonic, glycolic, and glyoxylic, were formed. Using electron microscopy, a damaging effect of benzene on the cell ultrastructure of English ryegrass leaves was shown, and this toxic effect depended on the benzene concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call