Abstract

Because of the increasing prevalence of multidrug resistance feature, several investigations have been so far reported regarding the antibiotic alternative supramolecular bioactive agents made of hybrid assemblies. In this regard, it is well-established that combinational therapy inherited by assembled supramolecular structures can improve the bioactivity to some extent, but their mode of action has not been studied in detail. We provide first direct evidence that the improved mechanism of action of antimicrobial supra-amphiphilic nanocomposites differs largely from their parent antimicrobial peptide-based polymers. For the construction of a hybrid combinational system, we have synthesized side-chain peptide-based antimicrobial polymers via RAFT polymerization and exploited their cationic nature to decorate supra-amphiphilic nanocomposites via interaction with anionic polyoxometalates. Because of cooperative antimicrobial properties of both the polymer and polyoxometalate, the nanocomposites show an enhanced antimicrobial activity with a different antimicrobial mechanism. The cationic stimuli-responsive peptide-based polymers attack bacteria via membrane disruption mechanism, whereas free radical-mediated cell damage is the likely mechanism of polymer-polyoxometalate-based supra-amphiphilic nanocomposites. Thus, our study highlights the different antimicrobial mechanism of combinational systems in detail, which improves our understanding of enhanced antimicrobial efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.