Abstract

After the discovery of bacteriocin AS-48, a 70-residue cyclic peptide produced by Enterococcus faecalis subsp. liquefaciens, some naturally-occurring cyclic proteins from bacteria have been reported. AS-48 is encoded by the 68-kb pheromone-responsive plasmid pMB2, and the gene cluster involved in production and immunity has been identified and sequenced. This peptide exerts a bactericidal action on sensitive cells (most of the Gram-positive and some Gram-negative bacteria). Its target is the cytoplasmic membrane, in which it opens pores, leading to the dissipation of the proton motive force and cell death, a mechanism similar to that proposed for the action of defensins or, most generally, cationic antibacterial peptides. This fact, together with its remarkable stability and solubility over a wide pH range, suggest that this bacteriocin could be a good candidate as a natural food preservative. The amino acid composition of purified AS-48 shows the absence of modified or dehydrated residues, making it clearly different from lantibiotics. Bacteriocin AS-48 also differs from defensins in that it does not contain cysteines and consequently no disulfide bridges, which makes is high stability even more remarkable. Composition analysis of AS-48 shows a high proportion of basic to acidic amino acids, conferring to this peptide a strong basic character, with an isoelectric point close to 10.5. Determination of the AS-48 structural gene DNA sequence, together with the sequences of AS-48 protease digestion fragments and mass spectrometry determinations, allowed us to determine unambiguously the cyclic structure of the molecule, being the first example of a posttranslational modification in which a cyclic structure arises from a "head-to-tail" linkage. We have solved the three-dimensional structure of AS-48 in solution, and it consists of a globular arrangement of five alpha-helices enclosing a compact hydrophobic core. Interestingly, the head-to-tail peptide link between Trp-70 and Met-1 lies in the middle of alpha-helix 5, which is shown to have a pronounced effect on the stability of the three-dimensional structure. Analysis of structure-function relationship allowed us to propose models to understand the aspects of the molecular function of AS-48. The purpose of this work is to review recent developments in our understanding about the biochemical and biological characteristics and structure of this unusual type of bacteriocin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.