Abstract

BackgroundChikungunya virus (CHIKV) and Dengue virus (DENV) have similar clinical symptoms, which often induce misdiagnoses. Therefore, an antigen detection diagnostic system that can clearly identify these two viruses is desirable.MethodsIn this study, we developed a novel peptide with high affinity and specificity to CHIKV, and further constructed peptide aptamer-based TRFIA assay to efficiently detect CHIKV. Peptide aptamer B2 (ITPQSSTTEAEL) and B3 (DTQGSNWI) were obtained through computer-aided design and selected as CHIKV-specific peptide aptamers based on their high binding affinity, strong hydrogen bonding, and RMSD of molecular docking. Then, a sandwich-Time-Resolved Fluoroimmunoassay (TRFIA) was successfully constructed for the detection of the interaction between peptide aptamers and viruses.ResultsWhen using B2 as the detection element, highly specific detection of CHIKV E2 was achieved with detection limits of 8.5 ng/ml in PBS solution. Variation coefficient between inter-assay showed the disturbances received from the detection of clinical fluid specimens (including serum and urine), were also within acceptable limits. The detection limits for 10-fold dilution serum and urine were 57.8 ng/mL and 147.3 ng/mL, respectively. The fluorescent signal intensity exhibited a good linear correlation with E2 protein concentration in the range of 0-1000 ng/mL, indicating the potential for quantitative detection of E2 protein.ConclusionsThese results demonstrate that the construction of peptide aptamers with high affinity and specificity provides an excellent method for rapid diagnostic element screening, and the developed peptide aptamer B2 contributed to better detection of CHIKV viral particles compared to traditional antibodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call