Abstract
Mass spectrometry (MS) is one of the most commonly used technologies for quantifying proteins in complex samples, with excellent assay specificity as a result of the direct detection of the mass-to-charge ratio of each target molecule. However, MS-based proteomics, like most other analytical techniques, has a bias towards measuring high-abundance analytes, so it is challenging to achieve detection limits of low ng/mL or pg/mL in complex samples, and this is the concentration range for many disease-relevant proteins in biofluids such as human plasma. To assist in the detection of low-abundance analytes, immuno-enrichment has been integrated into the assay to concentrate and purify the analyte before MS measurement, significantly improving assay sensitivity. In this work, the immuno- Matrix-Assisted Laser Desorption/Ionization (iMALDI) technology is presented for the quantification of proteins and peptides in biofluids, based on immuno-enrichment on beads, followed by MALDI-MS measurement without prior elution. The anti-peptide antibodies are functionalized on magnetic beads, and incubated with samples. After washing, the beads are directly transferred onto a MALDI target plate, and the signals are measured by a MALDI-Time of Flight (MALDI-TOF) instrument after the matrix solution has been applied to the beads. The sample preparation procedure is simplified compared to other immuno-MS assays, and the MALDI measurement is fast. The whole sample preparation is automated with a liquid handling system, with improved assay reproducibility and higher throughput. In this article, the iMALDI assay is used for determining the peptide angiotensin I (Ang I) concentration in plasma, which is used clinically as readout of plasma renin activity for the screening of primary aldosteronism (PA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.