Abstract

The proteolytic system of lactic acid bacteria is essential for bacterial growth in milk but also for the development of the organoleptic properties of dairy products. Streptococcus thermophilus is widely used in the dairy industry. In comparison with the model lactic acid bacteria Lactococcus lactis, S. thermophilus possesses two additional peptidases (an oligopeptidase and the aminopeptidase PepS). To understand how S. thermophilus grows in milk, we purified and characterized this aminopeptidase. PepS is a monomeric metallopeptidase of approximately 45 kDa with optimal activity in the range pH 7.5-8.5 and at 55 degrees C on Arg-paranitroanilide as substrate. PepS exhibits a high specificity towards peptides possessing arginine or aromatic amino acids at the N-terminus. From the N-terminal protein sequence of PepS, we deduced degenerate oligonucleotides and amplified the corresponding gene by successive PCR reactions. The deduced amino-acid sequence of the PepS gene has high identity (40-50%) with the aminopeptidase T family from thermophilic and extremophilic bacteria; we thus propose the classification of PepS from S. thermophilus as a new member of this family. In view of its substrate specificity, PepS could be involved both in bacterial growth by supplying amino acids, and in the development of dairy products' flavour, by hydrolysing bitter peptides and liberating aromatic amino acids which are important precursors of aroma compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call