Abstract

Accurate quantitative information about protein abundance is crucial for understanding a biological system and its dynamics. Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry (MS) protocols. Here, proteins are digested into peptides before quantification via MS. However, missing peptide abundance values, which can make up more than 50% of all abundance values, are a common issue. They result in missing protein abundance values, which then hinder accurate and reliable downstream analyses. To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly on the peptide level that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid sequence information into account. We benchmark our method against 11 common imputation methods on 6 diverse datasets, including cell lines, tissue, and plasma samples. We observe that PEPerMINT consistently outperforms other imputation methods. Its prediction performance remains high for varying degrees of missingness, different evaluation approaches, and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful uncertainty estimates and allows for tailoring imputation to the user's needs based on the reliability of imputed values. The code is available at https://github.com/DILiS-lab/pepermint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.