Abstract

Single-cell proteomics as an emerging field has exhibited potential in revealing cellular heterogeneity at the functional level. However, accurate interpretation of single-cell proteomics data suffers from challenges such as measurement noise, internal heterogeneity, and the limited sample size of label-free quantitative mass spectrometry. Herein, the author describes peptide-level differential expression analysis for single-cell proteomic (pepDESC), a method for detecting differentially expressed proteins using peptide-level information designed for label-free quantitative mass spectrometry-based single-cell proteomics. While, in this study, the author focuses on the heterogeneity among the limited number of samples, pepDESC is also applicable to regular-size proteomics data. By balancing proteome coverage and quantification accuracy using peptide quantification, pepDESC is demonstrated to be effective in real-world single-cell and spike-in benchmark datasets. By applying pepDESC to published single-mouse macrophage data, the author found a large fraction of differentially expressed proteins among three types of cells, which remarkably revealed distinct dynamics of different cellular functions responding to lipopolysaccharide stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call