Abstract
Acid stress is a challenging condition that yeast cells must overcome during fermentation. Enhancing the inherent tolerance of industrial Saccharomyces cerevisiae to organic acid stresses is crucial for increasing fermentation efficiency and reducing economic costs. In a previous study, we constructed a Saccharomyces cerevisiae strain SWY85S with improved tolerance to citric acid stress by modifying the second PEP4-allele. Malic acid is a dominant organic acid in grapefruit, which forms the acidic constituents of wine fermentation mash and finished products. We investigated the malic acid stress tolerance of the strain SWY85S in comparison with that of a strain with one PEP4-allele disrupted and the wild-type strain in this study. Our results revealed that the strain SWY85S demonstrated greater tolerance of malic acid stress, regardless of whether it was cultured with adequate nutrient supplies or under amino acid starvation. Moreover, the strain SWY85S performed remarkably in converting glucose to ethanol during fermentation under malic acid stress. This study provides insights into the role of a vacuolar PEP4-allele coding product in response to environmental stress and the physiological mechanism of yeast to withstand organic acid stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.