Abstract
The detection of pedestrians in real-world scenes is a daunting task, especially in crowded situations. Our experience over the last years has shown that active shape models (ASM) can contribute significantly to a robust pedestrian detection system. The paper starts with an overview of shape model approaches, it then explains our approach which builds on top of Eigenshape models which have been trained using real-world data. These models are placed over candidate regions and matched to image gradients using a scoring function which integrates i) point distribution, ii) local gradient orientations iii) local image gradient strengths. A matching and shape model update process is iteratively applied in order to fit the flexible models to the local image content. The weights of the scoring function have a significant impact on the ASM performance. We analyze different settings of scoring weights for gradient magnitude, relative orientation differences, distance between model and gradient in an experiment which uses real-world data. Although for only one pedestrian model in an image computation time is low, the number of necessary processing cycles which is needed to track many people in crowded scenes can become the bottleneck in a real-time application. We describe the measures which have been taken in order to improve the speed of the ASM implementation and make it real-time capable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.