Abstract
Multistimuli-responsive, in-situ functionalized mesoporous silica films were fabricated by evaporation-induced self-assembly through physical entrapment of the functional template poly(ethylene oxide)-b-poly(2-nitrobenzyl acrylate) (PEO-b-PNBA). The light-cleavable and pH-responsive block copolymer PEO-b-PNBA simultaneously serves as structure-directing agent and for in-situ polymer functionalization of the generated mesopore space. The use of different PEO-b-PNBA compositions results in highly filled hybrid mesoporous silica films with different pore sizes, porosity, and polymer chain sequence within the mesopores. Based on these structural variations and the polymer chain sequence the ionic permselectivity of the silica-polymer hybrid thin films is adjusted. The side chains of the template PNBA block can be deprotected upon irradiation, hereby releasing pH-responsive carboxylic acid groups. The irradiation energy and irradiation time-dependent deprotection allows gradually controlled charge regulation in mesopores. This approach of in-situ functionalization using multistimuli-responsive PEO-b-PNBA block copolymers facilitates the fabrication of multi-responsive hybrid mesoporous silica films and bears high potential for the production of complex, hierarchical, multifunctional mesoporous materials. This fabrication method including direct functionalization of mesoporous structures is of high interest for many applications based on controlled molecular transport in nanoscale pores, such as sensing, separation, or catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.