Abstract

The exchange rate of rupiah is one of the important prices in an open economy because the exchange rate can be used as a tool to measure the economic condition of a country. The movement of the rupiah exchange rate affected the Indonesian economy, maintaining the stability of the rupiah exchange rate became an important thing to do. In an effort to maintain the stability of the rupiah exchange rate, the factors that influence it must first be identified. Several factors affect the IDR / USD exchange rate, namely the large trade price index, foreign exchange reserves, money supply and interest rates. In this study, the Regression Adaptive Neuro Fuzzy Inference System (RANFIS) method was used to analyze the effect of predictor variables on IDR / USD exchange rates. The optimal RANFIS model is strongly influenced by three things, namely the determination of input predictor variable, membership functions, and number of clusters. Determination of the optimal RANFIS model is measured based on the smallest MAPE in-sample. Based on empirical studies applied to predictor variables on IDR / USD exchange rates, it was found that the RANFIS model was optimal, namely with 3 predictor variable inputs consisting of large trade price index variables, money supply and interest rates; with the gauss membership function; 2 clusters and rules produce an MAPE in-sample of 1.93% and an MAPE out-sample of 2.68%, so the performance of the RANFIS model has a very good level of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.