Abstract

BackgroundPentoxifylline (PTX) is a methylxanthine compound with immunomodulatory and antifibrotic properties. The simultaneous use of PTX and antifungal therapy (itraconazole) has previously been evaluated in an experimental model of pulmonary paracoccidioidomycosis (PCM), a systemic fungal disease caused by the fungus Paracoccidioides brasiliensis (Pb) and characterized by chronic inflammation and lung fibrosis that appears even after a successful course of antifungal therapy. The results revealed prompt and statistically significant reductions in inflammation and fibrosis when compared to itraconazole alone. However, the effect of monotherapy with PTX on the host response to PCM has not been well-documented. Our aim was to determine the effect of PTX on the course of pulmonary lesions and on the local immune response.ResultsAt the middle and end of treatment, the Pb-infected-PTX-treated mice exhibited significant reductions in lung density compared to the Pb-infected-non-treated mice as assessed by the quantification of Hounsfield units on high-resolution computed tomography (HRCT) (p <0.05 by Kruskal-Wallis test); additionally, at the end of therapy, the lung areas involved in the inflammatory reactions were only 3 vs. 22 %, respectively, by histomorphometry (p <0.05 by Mann–Whitney test), and this reduction was associated with a lower fungal burden and limited collagen increment in the pulmonary lesions. PTX treatment restored the levels of IFN-γ, MIP-1β, and IL-3 that had been down-regulated by Pb infection. Additionally, IL-12p70, IL-10, IL-13, and eotaxin were significantly increased, whereas Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES) levels were decreased in the lungs of the Pb-infected-PTX-treated mice compared to the non-treated group.Conclusions/significanceThis study showed that PTX therapy administered at an “early” stage of granulomatous inflammation controlled the progress of the PCM by diminishing the pulmonary inflammation and the fungal burden and avoiding the appearance of collagen deposits in the pulmonary lesions.

Highlights

  • Pentoxifylline (PTX) is a methylxanthine compound with immunomodulatory and antifibrotic properties

  • PTX decreased the pulmonary density in the Paracoccidioides brasiliensis (Pb)-infected mice Before treatment, the Pb-infected mice exhibited peribronchial consolidations that were associated with a significant increase in the upper lung densities (−263 ± 29 vs. −426 ± 68 Hounsfield units (HU) in the control mice, p < 0.001)

  • 8/10 of the mice that were treated for 8 weeks with PTX exhibited only small opacities that were referred to as unique nodules (Fig. 1g) accompanied by significant overall reductions in pulmonary density compared with the Pb-infected nontreated mice (−451 ± 68 vs. −269 ± 25 HU; p < 0.001)

Read more

Summary

Introduction

Pentoxifylline (PTX) is a methylxanthine compound with immunomodulatory and antifibrotic properties. The simultaneous use of PTX and antifungal therapy (itraconazole) has previously been evaluated in an experimental model of pulmonary paracoccidioidomycosis (PCM), a systemic fungal disease caused by the fungus Paracoccidioides brasiliensis (Pb) and characterized by chronic inflammation and lung fibrosis that appears even after a successful course of antifungal therapy. We evaluated a combined PTX and itraconazole therapy in a chronic experimental model of paracoccidioidomycosis (PCM) [14], which is a systemic mycosis produced by the thermally dimorphic fungus Paracoccidioides brasiliensis (Pb) that induces granulomatous inflammation and frequently progresses to pulmonary fibrosis [14, 15]. We reported prompt reductions of pulmonary granulomatous inflammation and fibrosis when compared to itraconazole treatment alone [14]. The effect of monotherapy with PTX on the host response to PCM has not been well-documented

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call